Abstract
The photosynthetic potential and underlying internal metabolism of a plant are some of the most commonly affected physiological functions as a direct consequence of stresses due to salt and water resulting in hindering plant growth and productivity. Under the influence of such detrimental stresses, a drastic alteration in a plant's osmotic requirements, hormonal production, shedding of leaves, and closure of stomata, along with a lessening in the diffusion and transportation of CO2 and H2O are commonly seen. This review unfolds with a description of the basic methodology involved in the proteomic analysis of various proteins involved in stress response along with a brief idea on identifying and obtaining a genomic sequence for proteomic studies. It then dives deep into understanding the impact of abiotic stresses such as salinity, drought and high temperatures on cereal crops such as rice and sorghum as well as the internal dynamics of tolerance mechanism unfolding during stresses have also been described. Extensive literature describing the proteomic and physiological responses to primary and secondary effects of salt stress in cereal crops emphasizing on ROS production and apoptosis, the role of osmolytes as ROS scavengers during osmotic stress and vacuolar antiporters in ionic stress along with the responses during drought stress such as the accumulation of LEA proteins and ABA-based signaling has been reviewed and critically discussed. The study also sheds light on some experimental proteomic studies conducted on the seedlings, root tissues, and shoots of rice cultivars.
Author Contributions
Copyright© 2020
Venkata Subrahmanya Anirudh Kaligotla, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
The stability of a plant mainly depends on its photosynthetic capability and overall performance and productivity. Environmental stresses caused due to salt and water play a cardinal role as they influence photosynthesis both directly or indirectly hence reducing the productivity of plants significantly. When viewed directly, salts affect the overall metabolism of the plant thus limiting the amount of fluid diffusing through the stomata and resulting in its closure. In an indirect sense, it also increases the amount of oxidative stress on the plant affecting the leaf photosynthesis The sugar levels present in the plant cells also play a major role in determining the photosynthetic ability of the plant. For instance, under drought conditions, the concentration of sugars tends to increase in contrast to the amount of starch, and the sugars decrease once the saturation for drought stress is reached by the plant. The concentration of sugars during drought stress is important because the entire gene alteration and changes in the proteomic features of genes involved in photosynthesis are dependent on it Various abiotic stresses in the environment such as high salt concentration, scarcity of water, and high temperatures cause an overall decrease in the productivity and development of plants leading to death in some cases. Abiotic stresses in agricultural crops result in dwindling food supplies due to a reduction of crop yield potential by a margin greater than 50% Analyzing the gene at the protein level quantitatively enables expression profiling thus determining their response to the plant stress which is a major step. There is a need to understand more about plant tolerance mechanisms. As there are variations in these stress responses by different cops. For instance, sorghum is much more resistant to these stresses than maize. Similarly, there is a change in the transcription profile of rice and Plants react differently to the salt stress conditions by removing excess salt from the cells thus reducing its overall concentration and thereby entirely preventing its entry into the plant. Lowering the concentration of various organic acids compensate for the reduced salt levels in the cells. Electrical conductivity tests decipher the concentration of salts in a solution which is measured at 25 degrees Celsius with the least concentrated saline soils having an electrical conductivity value of 4 Deci Siemens/m Disruption of the ionic equilibrium resulting in the reactive oxygen species production which in turn reduces the protein content of seeds and overall dry weight of the plant shoot under high salt stress severely affecting the human food and animal feeds Tremendous progress has been made in analyzing the proteome of various subcellular components such as plasma membranes, Golgi membranes, mitochondria, chloroplasts, etc, and advancement in the methods of their isolation. Among these, plasma membranes are pivotal as they act as pathways for transducing the generated stress signals Fundamentally, osmotic stress is caused when the concentration of soluble salts in soils drastically advances resulting in a substantial decrease in the osmotic potential of the soil. This leads to a lowering of turgor pressure due to loss of water from the roots of the plants to the surroundings affecting cell division and proliferation. To combat such water losses, plants osmotically adjust the water potential in cells. By accumulating the required concentration of ions and organic solutes, plants can adjust their osmotic potential in saline conditions. For instance, sodium is utilized as an osmoticum and stored in vacuoles as they constitute a major volume of the cell storing resources and waste products whereas potassium is retained in the cytoplasm in cereal crops. Such systematic segregation of ions from the cytoplasm maintains an osmotic equilibrium along with preventing the toxic effects of these ions on cellular and metabolic processes Plants tend to accumulate osmoprotectants that are basically highly soluble non-toxic and low molecular weight compatible osmolytes not in the vacuoles, but in the cytoplasm, lumen, and matrix of various cell organelles as a form of osmotic adjustment. Some of the highly prevalent osmolytes occurring in a majority of the plants are glycine betaine, proline, sugars, etc. Some exceptions like The conformation and charge interactions of the hydration layers circumscribing a protein are modified causing the protein to denature due to the presence of higher concentrated solutes like NaCl and MgSO4 in the cytoplasm. But osmoprotectants being strong structural formers with water prevents such protein unfolding’s Saline stress is basically due to the presence of one of the most common salts, sodium chloride, disrupting the ionic balance of Na+ and Cl- hindering the metabolic processes of various organelles in a cell along with K+ and Ca2+. Different plant species with diverse cell types have evolved various tolerance mechanism towards ionic stresses such as excluding sodium and chloride ions from the shoots, controlling the uptake of ions from the soil, and releasing out through the leaves thus increasing the tolerance levels of these in the cytoplasm of cells In the case of plants highly sensitive to saline conditions, the first possible course of action to avoid ion toxicity is to initially limit the entry of salts into the plants via their roots as seen in common bean where the absorbed sodium ions are prevented from translocating to the shoot system by a regulatory mechanism As the concentration of ions such as sodium, potassium increases, the water potential gradually diminishes resulting in plants imbibing low amounts of water thus modifying their whole physiological and metabolic conditions. As reported in the work done by Pang et al. Plants growing in saline soils tend to spend a lot of energy for synthesizing organic osmolytes for osmoregulation along with maintaining and stabilizing the protein function A major difficulty of plants in highly saline environments is the imbibing essential ions from the soil due to the over- dominance of certain non-essential ions making them nutrient deficient. Apart from salt stress creating competition for ion uptake from the soil, it also results in stunted growth of the plants due to the development of roots with a length shorter than the average thus limiting the uptake of nutrients. The interference of Na+ ions with the K+ ion channel transporters in the roots leads to its deficiency in the developing plant cells, affecting the ongoing enzyme activity along with limiting the synthesis of proteins as it acts as a co-factor for enzyme activation along with kickstarting the binding of tRNA to ribosomes Plants when exposed to biotic and abiotic environmental stresses, their rate of production of reactive oxygen species tends to increase substantially when compared to its production from a cellular phenomenon like photorespiration and fatty acid oxidation. Other sources of ROS generation that subjects the plant cells to oxidative stress are H2O2, HO- etc. Plants employ antioxidants such as glutathione, thioredoxin, etc, and scavenging enzymes like SOD, peroxidases, and catalases for preventing damage to membrane lipids, DNA, photosystem complexes, and proteins. Some of the major cellular structures possessing considerable portions of polyunsaturated lipids inclined for damage by oxidative stress are photosynthetic cells like chloroplasts The plant cells exploit various cellular, molecular, and biochemical mechanisms to keep up and maintain their normal physiological functions under water stress due to drought. One of the major challenges is to improve crop yield under drought conditions. The cellular processes in plants such as photosynthesis get largely affected leading to a collapse in its carbon dioxide assimilation rate, ultimately causing a stunted growth of the plant and a reduced crop yield. During such conditions, cells tend to lose their turgor pressure along with facing a considerable increase in the concentration of solutes. In order to cope up with such losses of turgor pressure, plants osmotically adjust it with compatible solutes like glycine betaine and sugars as can be seen in some sorghum varieties Vegetative tissues of plants facing water stress have been observed to accumulate late embryogenesis associated (LEA) proteins which help in guarding cell structures against dehydration by confiscating ions, sustaining the structures of membrane proteins, renaturing the unfolded proteins, and also operating as a hydrating buffer One major feature that can be seen in plants facing drought stress is the closure of stomatal pores aided by guard cells. Abscisic acid (ABA), a plant growth hormone controls this process along with producing many transcriptional factors. A guard cell proteome that was subjected to in-silico based analysis revealed 336 proteins previously unknown along with 52 signaling proteins involved in the mechanism. One such identified protein is known as myrosinase TGG1, involved in limiting the ABA-based signaling process that causes the stomata to open under drought conditions Apart from pathways that depend on ABA for acquiring tolerance during drought stress, certain genes like DREB follow an ABA independent pathway. DREB2A, a member of the DREB family and vital for multiple signaling pathways, when over-expressed, advanced the drought tolerance levels in Fundamentally, plant response to stresses is relatively complicated stemming from the perception of a signal to its transduction and gene expression thus conferring tolerance to the stress. Advancements in proteomic technologies have led researchers to identify the presence of shared sensory mechanisms during stress commonly called cross-talk signaling systems. Such signaling systems are evident in plants during salt and drought stress in the form of osmotic adjustments Chourey et.al. Identified six stress proteins that arrested the growth of the seedlings among which four of them were classified as LEA proteins that were degraded during salt stress recovery studies conducted on rice According to the study performed by Salekdeh et. al., two cultivars of rice plants, one resistant and the other sensitive to stress were propagated through hydroponics where concentrations of 50mM and 100mM NaCl was introduced for a period of 2 and 3 weeks respectively Upon subsequent analysis with MALDI-TOF MS and ESI-Q MS/MS among them were CCOMT, ascorbate peroxidase, an ROS scavenging enzyme, and a highly stress-responsive DNA protecting ASR1-like protein were identified. They found both the cultivars had similar mechanisms for dealing with oxidative stresses except for Caffeoyl- CoA Stress-induced adaptive responses are reported efficient way in the plants that depend on intricate coordination among the multiple signaling pathways. This has act in coordinate manners but in some cases, it is found in antagonistic manner. Modification in protein post-translation process is reported to regulate the protein activity and it is reported to localize with protein- interactions in various cellular processes. That can lead to elaborate the regulation of plant responses due to various external stimuli Various types of stress-signaling pathways are reported to play crucial role in the maintenance of homoeostasis in plant cells and these pathways is shown important role adaptation of new cellular adaptation situations. Plant organelles such as ER (endoplasmic reticulum) are reported with unfolded protein responses (UPR) with activation of biosynthetic stresses that leads to compensatory increase in ER activity. Further, The JNK (Jun N-terminal kinase) and p38 MAPK (mitogen-actvated protein kinase) signal pathway are reported to control the adaptive responses to intracellular or extracellular stresses There are various stresses including salt or drought signal transduction that are reported to consist of ionic or osmotic homeostasis signal pathways. Further, detoxification processes (such as damage control and repair mechanism) pathways is reported for growth regulation. Salt stress due to ionic concentration is reported to signaling via SOS (as global response to plant DNA damaging pathways) pathway and also calcium-responsive SOS3-SOS2 protein kinases complexes that can control the expression and activity of ion transporter such as SOS1. Next, osmotic stress is found to activate the several protein kinases (i.e. MAK-mitogen-actvated kinase) with mediation of osmotic homeostasis and or detoxification responses
Five osmotic stress levels (0, -0.3, -0.6, -0.9, and -1.2 MPa) and five salinity stress levels (0, 3, 6, 9, and 12 dS m−1), respectively were used on plants
The highest tolerance to salinity and osmotic stresses was observed in Ghamsar-Barzak ecotype that obtained its seed was from a dry climate with the lowest mean annual precipitation and soil pH and EC are high
Salinity, osmotic and ABA treatment is induced the CaWRKY27 genes. CaWRKY27 functions in the response to salinity and osmotic stress
CaWRKY27 positively regulates resistance to the pathogenic bacterium Ralstonia solanacearum and negatively regulates thermotolerance. It increased sensitivity to salinity and osmotic stress, with a higher inhibition of both root elongation and whole plant growth.
Identification of MdTAT2 is conferred the tolerance to drought and osmotic stresses in plants. MdTATs showed distinct expression patterns in different apple tissues or under drought stress
MdTAT2 overexpression increased resistance to drought and osmotic stress. It is found Tyrosine amino transferase (TAT) genes in apple (
Mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana. Oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment.
Antioxidase activity (SOD, CAT, POD and GPX) changed response to ILs stress. Next ROS and MDA increased with higher ILs concentration and longer carbon chain length. It shown from biological process, cellular component, and molecular function categories.
24-Epibrassinolide an active brassinolide and its role found in salt stress tolerance in plants. EBL improved photosynthesis by protecting chloroplast ultra-structure and by improving chlorophyll contents under salt stress
24-Epibrassinolide (EBL) important brassinosteroid, played very important role in plant metabolism. EBL increases proline accumulation and other hormones under salt stress. EBL plays a crucial role as in regulating ionic homeostasis under salt stress.