Abstract
Hyperphenylalaninemia (HPA) combined with neurological signs due to impaired catecholamine, dopamine and serotonin synthesis. Symptoms may appears in first week of life but most seen in age of 4 months. Atypical PKU disease caused mainly by deficiency in 6-pyruvoyltetrahydropterin synthase (PTPS) involved in synthesis of BH4. Clinical symptoms may include poor sucking, impaired tone, ataxia, and seizures. The purpose of this study was to analyze the genotype-phenotype relation among BH4 deficient patients because of PTPS mutations in different state of Egypt.
Suspected PKU patients loaded with phenylalanine/Kuvan, and the level of phe and phe/tyrosine ratio determined using tandem mass spectrometry by dried blood spots. Blood samples of 13 unrelated Egyptian patients were collected for total RNA extraction, amplification of PTPS gene by PCR followed with sequencing by Sanger method and finally mutations were recorded for genetic analysis.
The mean value of phe in 13 patients decreased after loaded of phenylalanine from 482.5μmol/L to 270.63 μmol/L as well as phe/tyrosine ratio was decreased from 13.4 to 6.36 after 24hour of treatment with Kuvan. Sanger sequencing of PTPS gene of those patient showed 21 SNPs and Indels mutations. The most repeated mutation is a novel 23 base pair homozygous deletion in 12/13; c.200C>T in four patients, a novel c.86A>T in two patients and three different mutations located once in three different patients (novel c.22C>T; novel c.273G>A and 405T>C) among patients. On amino acid predicted sequences 4 different types of mutations on protein level were presented, 1 deletion mutation in seven amino acid and 3 different missense mutations in addition to 2 silent mutations among 13 patients.
Patients were the first case of clinical diagnosis as hyperphenylalaninemia (HPA) undergoing genetic diagnosis for PTPS deficiency in Egypt. The sever HPA patients with severe nervous system damage mainly accompanied with deletion mutations and should pay more attention to the BH4 deficiency. While mild HPA is associated with base substitution mutations with mainly transition mutations (7/9; 78%). Next-generation sequencing technique can increase the mutation detection rate when the hereditary diseases are highly suspected in clinic.
Author Contributions
Copyright© 2020
F. Mohamed Ahmed, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Phenylketonuria (PKU; OMIM#261600) is autosomal recessive metabolic disorder disease, which is characterized by a disruption in the ability to metabolize amino acid phenylalanine (phe) into tyrosine (tyr) that is a precursor form of dopamine and other catecholamines. Individuals with PKU have deficiency or reduced activity of the hepatic phenylalanine 4- hydroxylase (PAH; EC 1.14.16.1) enzyme, which is necessary for this metabolic process to occur and consequently accumulate serum levels of phe and decrease neurotransmitter production specially tyrosine level Abnormal signs and symptoms of PKU and BH4-deficiency patients include poor sucking, impaired tone, progressive intellectual disability, mousy odor, microcephaly, mental and growth retardation, hypotonia, and epilepsy PKU is the most studied disease among inborn disorders of amino acid metabolism. The average incidence of PKU disease is about one per 10,000 newborns worldwide and varies widely around the world. PKU prevalence is as high as 1 in 2600 births in Turkey Infants with high level of phe may be due to PAH defect or BH4 deficiency usually appear normal at birth, and untreated infancy showed a continuous increasing in blood Phe concentration (hyperphenylalaninemia; HPA) and symptoms of PKU appeared, which categorized into a classical class and atypical class. The majority of worldwide PKU patients (98%) were classified as classic PKU, which is caused by mutations in PAH gene leading to absent or deficiency in PAH enzyme activity. About 2% of PKU cases Atypical phenylketonuric patients distinguished from classical Phenylketonuric patients with specific diagnostic criteria (i) blood Phe concentration was slightly elevated; 4-20 mg/100ml; (ii) greater tolerance to dietary phenylalanine on loading BH4 test; (iii) urinary pterin analysis showed no significant abnormalities It should be noted that it is not easy to perform a BH4 loading test in patients > 2years who are well managed by diet and thus have low blood phe concentration and prefer to perform the test during the neonatal period when phe level is naturally elevated. Our team group recommended to use a BH4 loading test and treatment trial with sapropterin dihydrochloride (Kuvan®, BioMarin, CA, USA and Merck, Geneva, Switzerland) instead. It is a synthetic formulation of the 6R-isomer of BH4 that reduced blood phenylalanine (Phe) levels in patients with HPA due to tetrahydrobiopterin- (BH4) responsive PKU by activating residual PAH enzyme activity in addition to improve the normal oxidative metabolism of phe of all ages and has been commercially available for several years. This agent was authorized and approved for the treatment of HPA due to BH4 responsiveness PKU in pediatric and adult patients without age restriction in 2007 in the USA and older than 4 years in 2008 in Europe The PTPS gene encodes 6-pyruvoyl-tetrahydropterin synthase (EC 4.6.1.10), an enzyme involved in the second step of de novo biosynthesis of tetrahydrobiopterin (BH4) which is composed of a pair of trimers arranged in a head-to-head fashion to form the functional hexamer. The homohexamer contains six active sites that are located on the interface of three monomers, two subunits from one trimer and one subunit from the other trimer The respond to the dietary treatment of classical PKU and BH4- deficiency patients is different. A life-long Phe restricted diet with or without BH4 has been the only possible treatment for classical PKU patients, this diet therapy is highly recommended to continue throughout their life to prevent behavioral disorders, cognitive, and emotional dysfunction
Materials And Methods
This study carried out on selected 13 Egyptian patients of unrelated families with mild hyperphenylketonuria (MHPA; >200<1200 μmol/L), they were positive for performing the BH4 loading test to be atypical PKU patients to determine the mutation/s in PTPS gene. Patients diagnosed and followed up at Genetics Unit, Pediatric hospital, Ain Shams University from January 2017 to October 2018. They were 7 males and 6 females aged from 2 month to 6 years suffering from poor feeding, delayed motor, mental development and coma. Most of these patients were identified during neonatal screening program. Selected patients diagnosed and confirmed as MHPA or atypical PKU by measuring the level of phe and phe/tyrosine ratio before and after BH4 analogous loading test by tandem mass. In which, dried blood level of phe concentration at a diagnosis time of selected PKU patients is ≥200 μmol/L and 1200 μmol/L and phe/tyrosine ratio > 3 obtained on two separate samples. They also were positive response to BH4 analogous loading test (the initial dried blood phe level was decreased by at least by 40% after 12 h following one dose of 20 mg/kg Kuvan challenge). Loading Kuvan test carried out according to the standard protocol of Ain Shams Hospital. In a test dried blood samples were collect on fasting for at least 8 hours, then patients orally received phenylalanine dissolved in breast milk or water at dose of 100 mg/kg body weight. Baseline dried blood Phe level was measured after 3 hr of receiving phe suspension and at that time, the patient treated with 20 mg/kg body weight of Kuvan dissolved also in breast milk. Following Kuvan administration and throughout the entire test, a normal breast milk or regular infant formula-feeding regimen must be provided on demand and Phe-free medical formula must not be given. Dried blood samples were taken at time 4, 8, 12 and 24 hours after Kuvan administration. The test its results must be available over a period of 24 h to avoid delaying treatment of neonates with classical PKU for longer than 24 h. All blood samples used to measure the concentration of phenylalanine and phe/tyrosine ratio as well by tandem mass from either venous blood or dry blood spot. Patients parents/guardians or one of his relatives gave written signed informed consent for participation in the study before any trial related procedures were performed and had to be willing to comply with maintain strict adherence to the diet. This study approved by the Research Ethics Committee (REC) of Medical Hospital Staff of Faculty of Medicine, Ain Shams University (FWA000017585), for experiments involving humans. Dry blood samples were taken from patients by heel stick, spotted on Whatman filter paper cards (Schleicher and Schuell 903;Dassel, Germany). They left to dry before screening by tandem mass spectrometry (LC/MS-MS; ACQUITY UPLC ®) to determine the level of phe and phe/tyrosine ratio in their blood on normal diet and throw loading test Blood samples were collected from patients in potassium EDTA vacutainer test tubes. RNA extraction and purification was carried out in the same day of sample collection by using GeneJETᵀᴹ whole blood RNA purification Mini Kit, #K0761 (Thermoscientific) according to the manufacturer s protocol. CDNA was synthesized by QuantiTect Reverse transcription Kit (QIAGEN; cat. no. 205314). PCR was carried out by Go Taq® green master mix, 2X, (Promega), cat. no. #M7112. One set of primers (forward and reverse) were designed for amplification of specific sits covering entire CDs length of mRNA of PTPS gene, they were designed by using web based primer-blast tool, NCBI (National center for biotechnology information). The forward prime sequence is 20 bases starting at position 76 with sequence 5`- GAAGATGAGCACGGAAGGTG-3` and reverse primer is 20 bases at position 606 with sequence 5`- ACGTGTTGACCTCTTAATAT-3` spanning amplicon of 512 base pair. PCR was carried out on the Gene Amp PCR system 9700 (Applied Biosystems, CA). The PCR cycles were carried out as follows: 5 minutes initial denaturation at 94°C followed by 30 cycles of amplification, each including 15 seconds denaturation at 94°C, 30 seconds annealing at 58°C, and 45 seconds extension at 72°C. Amplification cycles followed by 5 minutes final extension at 72°C and then cooled to 4°C. The amplification product was separated by agarose gel electrophoresis to confirm the size of amplicons. Bidirectional sequencing of the purified PCR product in both directions (GATC Company, Germany) using ABI 3730XL DNA sequencer (Applied Biosystem, USA) by using forward and reverse primers. Sequencing results are used for nucleotide blast on http://blast.ncbi.nlm.nih.gov/Blast.cgi (National center for Biotechnology) to make alignment with the PTPS gene normal strand by using its accession number NM_000317.3 to detect new mutations. All homozygous and compound heterozygous variants were included. All detected mutations submitted on https://mutalyzer.nl/name- checker and polyphen2 software to detect the effect of the mutation on the amino acids sequence of the PTPS peptide and detect the type and degree of pathogenicity of mutations. The mutalyzer gives also the expected protein sequence of the missense, nonsense and frame shift mutations. The amino acid sequences submitted to http://raptorx.uchicago.edu/ to detect the expected 3D protein structure of the mutant enzyme and compare it with the normal PTPS. The novel mutations detected from this study were submitted to GenBank database. Sequence results used for nucleotide blast by the online program http://blast.ncbi.nlm.nih.gov/Blast for alignment with normal PTPS gene to detect a mutations. The three major databases for known pathogenic and likely pathogenic mutations used including ClinVar, OMIM, and HGMD program. In total, variants of patients were generated and processed to select the candidate pathogenic mutations in coding regions (missense, nonsense, coding indels and frameshift) which were predicted to be neutral, deleterious or damaging by many software programs. Two software to determine the 3D structure and active sites; RaptorX (web server predicting protein structure property solely based on protein sequence or sequence profile) and I- TASSER (Iterative Threading ASSEmbly Refinement). Three software predicting pathogenicity; Sorting intolerant from tolerant (SIFT) (J. Craig Venter Institute, San Diego, CA, USA), protein variation effect analyzer (PROVEAN), and polymorphism phenotyping v2 (PolyPhen-2) (Division of Genetics, Brigham & Women s Hospital, Harvard Medical School, Boston, MA, USA), were applied to predict the effects of mutations on the protein structure and function. In addition, SPSS version 22 software used for statistical analysis of means ±SD
Results
This study was carried out on 13 patients (7 males and 6 females) from unrelated families ( Almost all patients were suffering from global developmental delay noticed at age of 3 month as most of them could not support neck or recognize parents and other 3 cases (p 7, p 8, p 11) were suffering from convulsions at age of 6 month. They suffering from hypotonia, briskly reflexes or elicited reflexes, except (P11) suffering from mild hypotonia in lower limbs, elicited reflexes and (P1) was with normal tone and normal reflexes. Only one patient (P 12) site lone and recognize families, all other patients were suffering from uncontrolled support neck or recognize family, (P2) was suffering from global developmental delay noticed at age of 3 month. First blood samples were collected from patient fasting for at least 8 hours, just after collecting fasting sample patients take phenylalanine powder dissolved in water or breast milk (by dose of 100 mg/Kg body weight). Three hour later of phenylalanine administration the second sample was taken, immediately patients administrated once with Kuvan (powder or tablets) at dose of 20mg/kg body weight dissolved in water or apple juice for infant or soluble in breast milk for neonates. After loaded of Kuvan 4 samples were collected at 4, 8, 12 and 24 hours. All blood samples used for measuring phe concentration in umol/l and phe/tyrosine ratio by tandem mass with taking care of clinical behavior during this period. Patients (P4, 5, 11, 10, 13) could support neck and recognize families, (P2) recognize mother, follow objects; (P3) can sit alone, crawl, recognize parents and say 2 words. Other patient (P11) can stand supported, recognize family, say one word, (P8) mild neck support, can follow objects, (P7) can walk upstairs alone, can say sentence of 3 words, can say 150 words, (P12) can walk supported, (P9) can sit alone and recognize mother, (P1, 6) can walk alone, say one word, recognize family. The tandem mass spectrometry (LC/MS/MS) result of PKU-BH4 responsiveness patients showed that phe concentration and phe/tyrosine ratio on fasting were highly elevated reaching to 227.8±51.1μmol/L (normally 20- 120 μmol/L) and 6.30±1.2 (normally 0.5-2.0), respectively. Moreover, level of phe and (phe/tyrosine) ratio after three hours of loading 100mg/kg body weight of phenylalanine were significantly elevated (P<0.001) reaching to 810.8±88.3 μmol/L and 22.13±1.9 respectively, suggesting a HPA and PKU cases. On the other hand, analytical results for loading test of Kuvan on Phe level, and Phe/tyrosine ratio showed that all 13 patients were (BH4) Kuvanresponsiveness (atypical phenylketonuric) as summarized in ; P<0.001 P<0.01 Bi-directional Sanger sequencing of the PTPS gene on 13 unrelated Egyptian PKU-HB4 responsiveness patients’ and aligned with PTPS mRNA gene (GenBank NM_000317.3) revealed 6 different kinds of mutations with variable frequencies (one deletion mutation and 5 base substitution mutations; Four novel mutations were identified in the present study; two variations that altered the coding sequences (c.22C>T and c.86A>T, resulting in p.Arg8Cys and p.Lys29Ile, respectively) and one variation produced silent mutation c.273G>A resulting in p.Lys=, in addition to a 23 base pair region deletion (c.164_186delAGTTGTGGTGACAGTACATGCAT resulting in p.Val55Aspfs*2). These four novel mutations were not detected in control chromosomes. Two base substitution mutations previously identified, one missense mutation c.200C>T and other produced a silent mutation c.405T>C resulting in p.Thr67Met and p.135Thr= respectively. The most frequent mutation among studied patents with PKU is a novel deletion mutation represents about 92.3% occurrence of all MPKU patients. Deletion of 23 base pair at position c.164_186; p.(Val55Aspfs*2) in exon 3 was found in 12 patients (all patients except number 4) that produced a truncated un-functional protein. Different base mutations and corresponding amino acid sequences aligned with wild type PTPS gene as well as 3D structure of protein sequence as represented in The second most frequent mutations among recorded PKU patients atypical type is previously published SNP mutation c.200C>T in exon 4 ( The third frequent mutation 86A>T in exon 2 is a novel mutation among patients representing p.Lys29Ile and located in patients 7 and 9 as represented in The least frequent mutation represented only one patient of each mutation type. SNP 22C>T in exon 1 representing a novel missense mutation p.Arg8Cys in patient 11 ( The pathogenicity degree of a novel missense mutation 22C>T; p.Arg8Cys was determined by polyphen2 program, which represent a tolerated mutation due to represent of horizontal dark line in the green region ( In current study, two software tools used to predict whether an amino acid substitution has an impact on the pathogenicity and biological function of a protein. PROVEAN and SIFT data for recorded mutations are listed in
characteristics
Gender n (%)
Males
7 (54)
females
6 (46)
Age, months
mean± SD
26.7±11.3
min; max
2-72
Age group, n (%)
<12 months
4 (30.7)
12<36
5 (38.6)
36-72
4 (30.7)
Onset of the disease, months
mean± SD
3±0.05
min; max
3-4
PKU severity n (%)
Mild
12 (92)
Severe
1 (8)
Mortality state n (%)
Died
1 (7.7)
Lived
12 (92.3)
parameters
Fasting
Baseline (3h after 100mg/kg phe intake)
Time after Kuvan treatment
4hr
8hr
12hr
24hr
Phe conc. μmol/L mean ±SD
227.8±51.1
810.8±88.3
407.7±36.2
302.0±33.9
261.5±24.6
258.4±31.5
Phe/tyrosine ratioMean ±SD
6.30±1.2
22.13±1.9
6.18±1.7
7.11±2.1
6.47±1.1
6.08±1.3
patient
Nucleotide change
Exon. No
Amino acidchange
Consequence
State ofmutation
P1
c.164_186del c.405T>C
del of all exon3 exon 6
p.(Val55Aspfs*2)p.135Thr=
del Synonymous
Homozygous Heterozygous
P2
c.164_186del
del of all exon3
p.(Val55Aspfs*2)
del
Homozygous
P3
c.164_186del
del of all exon3
p.(Val55Aspfs*2)
del
Homozygous
P4
c.200C>T
exon 4
p.(Thr67Met)
missense
Homozygous
P5
c.164_186del
del of all exon3
p.(Val55Aspfs*2)
del
Homozygous
P6
c.164_186del c.200C>T
del of all exon3 exon 4
p.(Val55Aspfs*2) p.(Thr67Met)
del missense
Homozygous Homozygous
P7
c.164_186del c.86A>T
del of all exon3 exon 2
p.(Val55Aspfs*2 p.(Lys29Ile)
del Missense
Homozygous Homozygous
P8
c.164_186del c.200C>T
del of all exon3 exon 4
p.(Val55Aspfs*2) p.(Thr67Met)
del missense
Homozygous Homozygous
P9
c.164_186del c.86A>T
del of all exon3 exon 2
p.(Val55Aspfs*2) p.(Lys29Ile)
del missense
Homozygous Homozygous
P10
c.164_186del c.200C>T
del of all exon3 exon 4
p.(Val55Aspfs*2) p.(Thr67Met)
del missense
Homozygous Homozygous
P11
c.164_186del c.22C>T
del of all exon3 exon 1
p.(Val55Aspfs*2) p.(Arg8Cys)
del missense
Homozygous Homozygous
P12
c.164_186del
del of all exon3
p.(Val55Aspfs*2)
del
Homozygous
P13
c.164_186del c.273G>A
del of all exon3 exon 5
p.(Val55Aspfs*2) 91Lys=
del Synonymous
Homozygous Heterozygous
Nucleotidechange
Amino acidchange
PredictionSIFT
PredictionPROVEAN
c.22C>T
p.(Arg8Cys)
deleterious
deleterious
c.86A>T
p.(Lys29Ile)
damaging
damaging
c.164_186del
p.(Val55Aspfs*2)
N/A
N/A
c.200C>T
p.(Thr67Met)
damaging
damaging
c.273G>A
91Lys=
neutral
neutral
c.405T>C
p.135Thr=
neutral
neutral
Discussion
Screening for PKU in newborns enables early diagnosis and therapeutic intervention to prevent the most severe consequences of disease disorder. The current standard therapy is adherence to appropriate treatment (including a phe-restricted diet) for life to maintain blood phe concentrations within recommended ranges to achieve the best clinical outcomes. While diet remains the cornerstone of treatment, in a subset of patients with absent or partial PAH deficiency activity, in another subset of PKU patients supplementation of tetrahydrobiopterin (BH4) alone or conjunction with a phe-restricted diet is essential to further lower elevated blood phe levels Hyperphenylalaninemia (HPA) mainly caused by phenylalanine hydroxylase deficiency (PAHD; 98%) that called classical PKU disease or BH4 deficiency (2%; In 2014, the American College of Medical Genetics and Genomics (ACMG) published guidelines for treatment of PKU stipulated that BH4 responsiveness should be investigated by performing a BH4 loading test in all PKU patients In the test, a baseline blood sample collected from food capillary of newborn patient or figure/vein of adults after 3 hr of introducing 100mg/Kg body weight phenylalanine dissolved in breast milk or water to measure phe level and phe/tyrosine ratio followed by administration of one dose 20 mg/kg Kuvan dissolved in breast milk or apple juice. Following Kuvan administration and throughout the entire test, a normal feeding regimen must be provided. Blood samples were collected to measure phe levels and phe/tyrosine ratio were taken at 4, 8, 12, and 24 h after Kuvan administration. Patients who will not respond to BH4, for longer than 24 h were excluded from our study. The results of 13 selected patients indicated a decrease in blood level of phe at any time point after loading of Kuvan of ≥30% compared with baseline indicates the presence of BH4 responsive HPA. It is worth noting that the threshold of ≥30% is an arbitrary value; therefore, Muntau Therefore, it is important to detect BH4 responsiveness patients at the neonatal stage or even older to determine the appropriate course for managing the disease. In which only a subset of patients with PKU who are fully responsive to treatment with BH4, they will be treated only with sapropterin and those who are partially responsive will be treated with sapropterin and phe-restricted diet, and those who are not responsive will be treated with phe-restricted diet only. In addition, sometimes BH4 loading test cannot distinguish patients with BH4 deficiency and BH4-responsive PKU In humans, the PTPS gene (MIM 612719) located on chromosome 11q22.3-11q23.3, contains six exons and encodes for a protein of 145 amino acids Sanger sequence of 13 unrelated PKU patients identified 21 variants, 5 of them with a single mutation and 8 with two compound mutations representing a mutation detection rate of 100%. These mutations represented 6 different types of mutations (two of them are silent mutations, one novel c.273G>Al, p.91Lys= exon 5 and the other was previously identified c.405T>C, p.135Tyr= exon 6). Other four mutations represent three novel mutations, c.164_186del in exon 3 p.Val55Aspfs*2, c.22C>T, p.Arg8Cys in exon 1, and c.86A>T, p.Lys29Ile in exon 2, in addition to one previously identified c.200C>T, p.Trp67Met mutation in exon 4. Novel mutations were the most prevalent mutations in this study, which accounted for 76% (4/6) of the total mutant alleles. Particularly, p.Val55Aspfs*2 mutation has been reported as the most frequent mutation in PKU-BH4 responsiveness patients with a frequency of (12/13; 92%). The most prevalent alleles, c.164_186del variant which accounted for 57% (12/21) of the total mutant alleles, c.200C>T, accounts for 19% (4/21), c.86A>T, accounts in 9.5% (2/21). The deletion mutations led to an in-frame deletion or frameshifting, while two missense mutations were predicted to affect enzymatic function and/or stability. However, to date, studies using exon analysis of different populations worldwide have shown that PTPS mutations were at least 88 different mutations Since the incidence of PTPS deficiency is common among BH4 responsiveness patients, the distribution of common mutations were differ from population to population. In a previous study, PTPS deficiency was markedly higher (98%) in the Chinese population than that internationally accounted On one other hand previously recognized c.200C>T; p.Trp67Met mutation On the other hand, I-TASSER of two novel missense variants (p.Arg8Cys and p.Lys29Ile) identified in patient 11 and in patients 7&9 respectively as a compound homozygous with del c.164_186; mutation in PTPS protein are located away from the catalytic domain. Both mutations are located in the first and second coil region of PTPS polypeptide chain and predicted to be damaging and deleterious from prediction software, SIFT and PROVEAN ( In summary, this is the first reported case of Egyptian BH4 deficient patients, which provides a reference for PTPS gene mutation research in the future. This study identified three different novel variations among 13 BH4- deficient patients to improve PTPS mutation database. The results could be of value for differential molecular diagnosis of BH4 deficiencies to avoid any delay in diagnosis and treatment.