Abstract
African countries are facing frequent blackout. Thus in sub Saharan region, due to frequent power cut, the laboratory professionals find sometimes difficulty to carry out earlier diverse diagnostic tests.
The aim of this work is to evaluate the feasibility of enzyme immunoassay tests in the absence of a conventional source of electricity.
We developed a battery-powered experimental device, which was then applied to diagnose measles. The samples included 45 sera randomly selected from non-haemolysed serum samples received and stored at the National Public Health Laboratory of Benin. The experimental device is composed of two devices (Devices 1 and 2). The Device 1 provided an average temperature of 34.47 °C, 20 min after starting. With Device 2 an average temperature of 20.32 °C is obtained 15 min after starting.
With the experimental device the same rate of measles antibody-positive sera (44.68%) was obtained as recorded from the test using the standard equipment of laboratory. The experimental device detected 18 negative and 8 intermediate results against respectively 19 and 7 by the standard equipment. The analysis of the results of both equipments shows a concordance rate of 93.33% with a kappa reproducibility coefficient of 0.89.
The device conceived in our study is a simply equipment allowing the realization of the enzyme immunoassay tests, in this case the ELISA anti-measles test. The rate of concordance obtained shows that this device can be used with commercial kits and at temperatures close to those recommended by the manufacturer without altering the results.
Author Contributions
Copyright© 2020
S.U. DOSSOU Camille, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
In the last decades, Sub-Saharan region of Africa has faced daily energy failure. Laboratory technicians as well as workers in other sector, who work even at a public center experienced power outages some days. But the frequency of power outages is especially acute for rural professional. Indeed, compared to urban cities, majorities of sub-Saharan Africans workers are without electricity in rural areas In Benin, we observed that being off the electrical grid has also an impact on health facilities. However, private biomedical laboratories are by far the most likely in country to have difficulty to access electricity. Blackouts are often caused by unstable infrastructure that is likely to suffer from breaking and theft. This is not without consequences for electrical apparatus and therefore is a handicap for biologists in the context of biological diagnosis. However, in the context of the reporting and notification of mandatory reported disease, a biological diagnosis is required as soon as possible in order of the control of likely epidemic outbreak and to take appropriate measures to contain it. During the blackout, laboratory professionals faced difficulties to complete such diagnosis , since the power cut caused disruptions to health services due to the absence of standby power In common laboratories, the diagnosis of certain mandatory reported diseases is done by the Enzyme Linked ImmunoSorbent Assay (ELISA). It is well known that ELISA is a gold standard technique performed for the laboratory diagnosis, based on the detection and quantification of the specific antibodies or antigens Thus in this work, we evaluated the feasibility of ELISA tests in the absence of a conventional source of electricity. The objective was to replace the heat source (the oven) by another alternative source: incandescent lamps powered by batteries within a cardboard box, and on the other hand replace the source of room temperature (the air conditioner) by a cold accumulator. This experimental device was then tested by applying to the diagnosis of measles at the national public health laboratory of Benin.
Materials And Methods
This is a cross-sectional study carried out from January 9th to June11th, 2013. Ethical approval was obtained from the National Ethic Committee of the Ministry of Health while consents were obtained from the suspected measles patients and the relatives. The first device (Dispositif 1) is composed of a hermetic cardboard box (33 cm x 25 cm x 20 cm) containing another smaller cardboard, in which a space is reserved for the solid support of the ELISA test (a plastic tray containing a thin layer of wet compress). The tray is framed by two incandescent lamps of six (06) volts each, powered by eight (08) batteries of 1.5 volts at the rate of four (04) batteries per lamp. One of the lamps has in its circuit a switch acting as a thermostat, for manual regulation of the temperature inside the device ( The second device (Dispositif 2) consists of a plastic box, hermetic and opaque (22 cm x 14 cm x 8 cm) containing a ice pack already in a state of charge at the time of power cut. The ice pack is covered with a layer of carded cotton on which will be deposited the solid support of the test ( A probe thermometer incorporated in both devices makes it possible to follow the variation of the temperature. The devices conceived are applied for measles diagnosis. The study samples are composed of forty five (45) sera randomly selected from the non-haemolyzed serum samples, received at the national public health laboratory of Benin during the study period. These sera came from blood samples collected from patients suspected of measles from the seventy seven (77) districts of Benin. After collection, blood samples were reached the national laboratory within a period of three (03) days, where they were kept between 2°C and 8°C until they were tested. After testing, these samples were conserved at -30°C. Testing was performed using indirect ELISA method. Anti-measles Virus IgM was detected using ELISA Kits manufactured by Siemens Healthcare Diagnostics product GmbH, Germany. All the samples from suspected patients were tested for measles specific IgM antibodies in 96 wells microplate. Since immunoglobulin G (IgG) can interfere in the detection of IgM by solid phase ELISA, During this stage of the study, the numeric database and the epidemiological surveillance archives for measles, from the National Laboratory of Public Health, were consulted. The serological status with respect to measles and the adjusted optical densities of the 45 specimens selected were then recorded. The results recorded here were previously obtained with the same ELISA test kits described above which was done using the standard laboratory equipment and conditions. Here, the incubation temperatures were provided by the electric apparatus: the water bath (for 37 °C incubation) and the air conditioner (for 25 °C incubation). The results were recorded as adjusted optical density (ΔDO). According to the manufacturer's instructions, the results should be interpreted as follow: negative (DO ≤ 0.1), positive (DO ≥ 0.2), and undetermined (0.1
Results
The first device noticed as “Device 1” ( In addition, for the second device which was designed to provide temperatures in range of room temperature, it displayed temperatures that varied between 18.50 °C and 23.40 °C with an average of 20.32 °C (95% CI = 19.94-20.69). This average temperature is obtained 15 minutes after starting the device and remains close to this average for 3 hours ( After the design of the experimental device, it was used to diagnose the 45 specimens again. This is to evaluate the detection power of true positives. The results showed that the optical densities obtained ranged from -0.004 to 0.339 with an average of 0.1598 (95% CI = 0.125-0.194) ( N is the absolute frequencies. This phase of the study focused on the retrospective analysis of data from 45 serum samples previously diagnosed for measles, using the Enzygnost anti-measles Virus/IgM® ELISA kit with a standard equipment. The data were collected from the numeric database and the epidemiological surveillance archive of the laboratory for comparison to those obtained with the experimental device. It appears that the recorded optical densities (OD) ranged from -0.011 to 0.385 with an average
N
%
N
%
N
%
N
%
Standard equipment
7
14.89
19
40.43
21
44.68
47
100
Experimental device
8
17.02
18
38.30
21
44.68
47
100
Experimental device
Total
Positive
Indeterminate
Negative
Standard equipment
Positive
20
01
00
21
Indeterminate
01
06
00
07
Negative
00
01
18
19
Total
21
08
18
47
Discussion
The experimental device designed to replace the standard equipment using current power supply has provided temperatures close to those recommended for ELISA assay. The temperature provided by the Device 1 (34 °C) confirms the possibility of carrying out the incubations of the samples and the conjugate at a temperature close to 37 °C ± 1 °C, as indicated recommended. In addition, the temperatures provided by the Device 2 (up to 20 °C) allow absorption of the rheumatoid factor (RF) and incubation of the substrate under required temperature conditions (between 18 °C and 25 °C). The experimental device shows almost the same adjusted optical densities (ΔDO) as the standard equipment (an average of 0.1598 vs. 0.1567). Indeed, there is no significant difference between the adjusted optical densities (ΔDO) recorded ( In order to improve the assay performance, instead of freshly coated plates, precoated plates can be used. Indeed it was found out that precoated plates will contribute to improved assay robustness at an acceptable diagnostic proficiency We find overall a great rate of measles antibody-positive sera. But, the number of sample in lower to establish an accurate measles incidence in the country. Nevertheless, this percentage of positive samples mimic the measles epidemiological trend in Africa regions. Indeed, in 2016, the number of reported measles cases in Africa region was 36,269. The number of equivocal results (indeterminate specimens) are statistically significant compared to positive percentage (
Conclusion
Mandatory reported diseases carry challenges especially to developing countries, where the technical platform for diagnosis is sometimes lacking, and in addition there are power cuts. It is then essential to develop a palliative equipment to avoid disturbances in the course of tests during power cuts. Thus the device designed in our study is a simple equipment allowing the realization of ELISA tests, apply to the anti-measles ELISA test. The concordance rate obtained shows that this device can be used with commercial kits and at temperatures close to those recommended by the manufacturer without altering the results. However, the batteries used to power the equipment could be replaced by a 12-volt battery, powered by a suitable solar panel.