Abstract
Nutrient depletion and imbalanced use of fertiliser nutrients, inappropriate tillage and rain- water management practices often result in land degradation. Declining soil health contributes to climate change through loss in soil productivity, biodiversity, soil carbon, and moisture and ecosystem services. In order to address declining soil health, government of India has launched a soil health card (SHC) scheme aimed at need base use of chemical fertilisers. The paper points out the short-comings in the SHC scheme. Balanced and need base use of chemical fertilizers can be helpful in environmental protection and restoring soil health. The paper identifies potential agronomic practices and production management systems that can reduce our dependence on synthetic nutrients. Integration of soil fertility management domains with computer based QUEFT crop model has the potential of making fertiliser recommendations more domain and crop specific and less cumbersome. For soil health assessment chemical indicators must be integrated with physical and biological properties of the soils which can be predicted through reflectance spectroscopy. For assessing soil health related issues across different agro-ecoregions, there is however an urgent need for building-up more robust soil reflectance libraries.
Author Contributions
Copyright© 2019
Gupta Raj, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Agricultural policies associated with the Green Revolution have played a dominant role in enhancing the production of chemical fertilizers for meeting the nutrient needs of crops to boost their productivity. Green Revolution era shaped agronomic research, much of which was singularly focused on use of chemical fertilizers to harness the potential of the new improved cultivars. In our zeal to enhance total production, we grossly overlooked the need for balanced use of N:P:K fertilisers and the importance of regulatory functions of soils. Subsidies on chemical fertiliser nutrients promoted not only over-use but also their imbalanced use and discouraged farmers to use bulky organic manures. Farmers have further resorted to crop residues burning to enable easy intensification of the cropping systems. As a management practice, residue burning may hasten decline in quality of soil organic matter (SOM), the major soil ingredient facilitating soil aggregation and structural stability Soil testing should lead to a better prognosis of the constraints beyond nutrients, help target management practices to alleviate constraints (chemical, physical & biological) and indicate how the soils will respond to specific management practices. The usual chemical tests of soils currently in vogue, apparently do not take us beyond fertiliser use and indicate very little about the physical and biological constraints/ properties of the soils. Also, significant differences amongst climate, soil and management, make it impossible to extrapolate the results of fertilizer recommendation from one site to others. Integrated analysis of the long-term rice-wheat yield trials conducted at 23 locations across the Indo-Gangetic plains indicated that wheat yields had not improved even after 7-23 years, while surprisingly rice yields had declined during the same periods It appears that the innovative production management system such as “conservation agriculture” can meet the last two requirements in addition to supporting a healthy and vibrant ecosystem The efficacy of the SHC depends on a three-step process, namely (i) collection of representative soil samples and farmers’ inputs about their fields, (ii) reliable chemical analysis of the soil samples in a timely manner, and (iii) development of soil test based recommendations, duly recognising any other soil constraint such as drainage congestion, soil depths, poor soil moisture retention, rolling landscapes, soil erosion, poor biotic activity or soil borne diseases/ pests etc. Soils are the keystone of healthy and vibrant ecosystems, providing physical, chemical, and biological substrates and functions necessary to support life but are under constant threat from heavy use, poor management and changing climate. In the on-going National Soil Health Card Scheme (SHC), report cards provide chemical analysis on status of macro- (N,P,K,S) and micro-nutrients (Fe, Zn, Cu, Mn and /B) besides values for electrical conductivity (EC), pH and soil organic carbon (SOC). The soil test based fertiliser recommendations in SHC are based on either the area-general fertiliser recommendations of the state governments or on the basis of targeted yield equations developed by the soil test crop response scheme (STCR) of the Indian Council of Agricultural Research (ICAR). SHC scheme in its present form does not take us beyond fertiliser recommendations, and does not capture or monitor soil functions which make soils a living system, providing a range of eco-services for mankind (e.g. filtration of water, aquifer recharge, preventing nitrate pollution of drinking water, water retention and supplies and climate change etc.). SHC scheme also does not consider the physical and biological attributes of soils, which can also influence the use efficiency of resource inputs in crop production, both positively and negatively. It provides little information on the impact of specific nutrient management practices on soil health. Thus the SHC scheme misses the vital connection to soil health vis-a-vis multiple ecosystem services provided by soils. It is for these reasons, enhancing total food production without due diligence on soil degradation processes and ecosystem services, has been a fundamental flaw of the Indian strategy for food security under the new realities of climate change. Excessive dependence on chemical fertiliser nutrient based approach for maintaining soil fertility, without adequate attention to management of soil organic carbon and rain-water has only contributed to continued and accelerated soil degradation in the Indian summer monsoon season ( hot summers: April- June: monsoon season: July –September). Summer deep plowing, bare fallows and crop residue burning all together reduce the capacity of the soils to absorb rainwater and convert it in usable soil moisture by crop plants. As a consequence, natural resources are now showing multiple signs of fatigue and decline Generally farmers apply P and K fertiliser nutrients as basal application along with a starter dose of N at the time of crop seeding. The balance of N fertiliser dose is subsequently top-dressed in 2-3 splits or variably applied “on-the-go” in response to proximal crop sensing using chlorophyll meter, GreenSeeker, Yara N and Crop Circle sensors The Prime Minister of India has urged that our dependence on chemical nutrient fertilisers be reduced to half in the coming years to protect environment and improve soil health. In spite the fact that this is a laudable objective and a challenge for agricultural researchers, developmental agencies and the farmers, it is yet to ignite a debate on how this objective can be achieved sooner than later. This challenge would call for a major shift away from the singular focus on chemical fertilisers to more of the biological approaches to sustain and enhance the current levels of crop production. To save on fertilisers, we need to (a) identify potential agronomic practices that reduce use of synthetic nutrients and (b) identify production management systems having the targeted effect. The enunciated policy statement implies that we immediately promote the adoption of agronomic practices such as (i) inclusion of legumes in the cropping systems, (ii) conjunctive use of chemical fertiliser and organics, (iii) rely on nutrient recycling with cropping pattern differing in rooting pattern, (iv) application of beneficial symbiotic microbial associations, (v) deploy in situ / ex situ composting techniques to improve biotic activity in the soils, (vi) increase botanical N fixation, (vii) raise green manuring crops,(viii) use microbial inoculants to improve nutrient access in soils (arbuscular mycorrhiza and P solubilizing bacteria) and (ix) promote rational use of nutrients in cropping systems, etc.. The production management system strategy requires promoting the adoption of (soil, water, and crop management strategies) that improve resource use efficiency and build soil organic carbon. Conservation agriculture (CA) is one such innovative production management system, which is close to organic farming. CA allows use of agrochemicals and its yield potential is hardly debatable, unlike the organic farming. CA as a production management system has the targeted effect in reducing the use of synthetic fertilisers through attributes such as: (i) tillage practices that reduce the rate of SOM decomposition, runoff and soil erosion (avoidance of summer deep plowing), and conserve soil moisture etc. to improve soil health (ii) enable seeding in excessively moist (surface seeding) or in dry soils (dry seeding) and inclusion of high biomass producing crops, (iii) residue retention and brown manuring, (iv) switch from monoculture to rotation cropping and annual to perennial crops, (v) reduce fallowing during rainy season (vi) avoids sudden land use changes Globally, research outputs have clearly indicated that inclusion of M Agricultural research, based on agro-climatic zone, was initiated by ICAR in 1979 with an objective to generate location specific data for identification of the major problems limiting agricultural growth. Using the criteria of soils, physiography, bio-climate (climate, crops, and vegetation) and length of the growing season, ICAR delineated the country into 20 agro-ecoregions (AER) and 60 agro-eco-sub-regions (AESR). These criteria carved out homogenous regions for their growth potential, but did not reflect on the socio-economic endowments, market support and service sector in agricultural development. The AER concept also ignored the fact that introduction of irrigation water alleviates a major constraint for crop production and in fact provides opportunities for diversification of agriculture. In order to further refine the concept, ICAR introduced the concept of Production System Research (PSR), which is not only analogous to AER and geographical approach but goes beyond both of them. PSR concept integrates all the system components for determining productivity and profitability of the system. A total of 126 agro-climatic, NARP zones were earlier delineated in the country, based on ecological parameters like topography, rainfall pattern, soil types, temperature, cropping pattern and water availability which influence the type of vegetation Managing the natural resource base and sustaining agriculture require land based solutions. To meet these stated objectives, researchers have focused on the integration of biophysical and socioeconomic parameters to characterize land management units, also known as resource management domains / zones The way forward seems that all exiting spatially distributed point chemical test patterns of N, P and K etc. be used for development of a georeferenced soil fertility framework. Using all the existing chemical soil test values obtained from analysis of spatially distributed samples in the state soil testing lab, an unsupervised classification method of multivariate clustering was used to delineate eight homogeneous soil fertility management zones The RMD frame-work allows cost-effective procedures for soil sample acquisition, and drastically reduces analytical work, besides enabling researchers to incorporate significant factors that regulate the supply of nutrients and hence fertiliser recommendations. Resource domains having a specific N, P and K combinations allows for real-time fertiliser recommendations For agriculture to remain productive, it has to return to its roots and rediscover the importance of healthy soils. The two crucial characteristics of a healthy soil include rich diversity of its biota and the high soil organic matter content Remote sensing applications in agriculture are generally classified according to the type of platforms for the sensor (satellite, drones, tractor mounted and ground based). The associated imaging systems of the sensors are differentiated based on the altitude of the platform, spatial resolution of the image, and the minimum return frequency for sequential imaging of temporal patterns in soil or plant characteristics. Improvements in spatial resolution, improves the homogeneity of soil or crop characteristics due to decrease in pixel size. Vigorous above-ground crop stands, invariably supported by a profuse root system in the soil below surface, reflects on health of the soils. Crop performance can be measured using remotely sensed NDVI (Normalized Difference Vegetation Index) data on a large scale. A low NDVI may reflect to several soil conditions (poor drainage, secondary salinization, soil compaction, shallow soil depths and low moisture and nutrient deficiencies etc.) that limit plant growth. NDVI images enable us to map the combined effect of several soil health indicators besides isolating slick/ hot spots constraining crop growth. Recent researches Conventional chemical soil testing approach provides information about amendment needs and fertiliser doses for replenishment of plant nutrients depleted through crop production, leaching and soil loss. This approach has proved useful in increasing agricultural production, but its sole focus on fertilizer recommendation, ignores the physical and biological environment of the soils which also significantly influence crop production. The inadequacy of the soil fertility recommendations spurred developments for a more comprehensive assessment of soil health, based on the triad of physical, biological, and chemical properties, which is more sensitive to land management practices and reportedly better correlated to ecosystem processes. Remote sensing techniques map the combined effect of several soil health indicators over larger areas besides identifying areas where soil properties (physical/ chemical/ biological) are becoming growth limiting factor. Soil fertility management domains when integrated with high resolution soil health assessments can allow us to map the state of soil health on a larger scale, and reduce soil testing costs and accelerate farm advisory services.