Abstract
Author Contributions
Copyright© 2017
Narain Prem.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Research in science or for that matter in any field of activity is Open access journal publishing is currently gaining momentum since its start by PLOS Biology in 2003 and has shown how it can result in reducing the cost of publication for the overall academic community, apart from making research open to all, particularly the public. This is made possible by the technology of The launch of Journal of Agronomy Research (JAR) based on this model is the latest venture of Ever since the origin of agriculture around 10,000 years ago in the Fertile Crescent of the Middle East, cultivators have faced the problem of depletion in soil fertility due to poor agronomic practices. To grow and produce food, crop plants use carbon dioxide and oxygen from the air as well as water and mineral nutrients from the soil. If soil health is not taken care of, intensive cultivation may give higher yields in the short run but deteriorate the yields in the long run. This has happened time and again in agricultural production all over the world, in developed, developing as well as under-developed countries. The prime consideration everywhere is therefore to discover ways and means to ensure sustainability in food production. It has led to several models of agricultural production, some tried, some being attempted and some given up. We discuss them briefly in what follows. At the one end of the spectrum is the high-technology, high-input agriculture, the so called industrial agriculture. Use of plant genetic engineering methods coupled with irrigation and use of market-purchased inputs of fertilizers, pesticides and herbicides to maximize production are the hallmark of such agriculture mostly practiced in developed countries like USA. This has no doubt led to enormous gain in productivity but at the cost of depleting the soil health in terms of increased salinity and alkalinity which has often been ignored due to economic considerations. At the other end of the spectrum is the indigenous agriculture or traditional agriculture based on use of organic fertilizers, rain-fed water and traditional crop varieties mostly adopted in developing and under-developed countries like Africa. Such agriculture is obviously accompanied by poor food production and increase in poverty. In between the two extremes, there has evolved several other forms of agriculture like alternative agriculture, sustainable agriculture, farming in nature’s image, green revolution, and dialectical agriculture. Alternative agriculture is a system comprising of ‘organic farming’, ‘low-input agriculture’, and/or ‘sustainable farming’. There is emphasis on management practices and on biological relationship between organisms in each of the components. A crop field is regarded as an ecosystem with interaction amongst the organisms which must remain in balance. It does not use inorganic fertilizers but stresses integrated pest management (IPM), tillage, animal and green manure, and crop rotation. It does not use genetically altered varieties but crops improved by classical plant breeding methods. Sustainable agriculture emphasizes conservation of its own resources with modern technologies of certified seeds, low-tillage practices, IPM with focus on biological control, and weed control by using crop rotation and intercropping. It attempts to use wind or solar energy as against purchased energy and use organic animal manure and nitrogen-fixing legumes as green manure to maintain soil fertility so as to minimize the need of purchased inputs from the market. Plant genetically engineered varieties as well as those evolved by traditional plant breeding methods are equally used in this type of agriculture. The basic rule is to avoid agronomic practices that lead to environmental degradation as well as to minimize inputs. Farming in nature’s image Green Revolution is a top-down approach to improving crop productivity. It refers to large increases in food production in developing countries like India, Iran etc. due to the use of improved strains of wheat, rice, maize and other cereals in the 1960s developed by noble laureate Dr. Norman Borlaug and others under the sponsorship of the Rockefeller Foundation and other organizations. The agronomic practices involved the use of chemical fertilizers (NPK), pesticides and irrigation. In India it made a tremendous change in the food situation in that the country, suffering from food deficit for ages, became a surplus state capable of exporting food. The success story of green revolution in India became a model to emulate. The states of Punjab, Haryana and Western Uttar Pradesh, where wheat and rice are predominantly grown under irrigated conditions, were prime contributors to this revolution. However the gains in productivity were not sustainable over time. In this context, it is important to note that the green revolution strategy involved, given the dwarf varieties of wheat and rice, searching for levels of inputs that would give high yields ignoring the irreversible losses in the form of soil erosion and loss of pest resistance. The dwarf varieties put more of their energy into grains instead of the vegetative parts of the plant that no doubt increases the yield but also makes it easier for weeds to outgrow them making the herbicide treatment necessary. Their reduced root growth makes the plant more sensitive to shortage of water. So while the age old problem of 'lodging of plants' with tall Indian varieties was solved with the advent of dwarf varieties, it created simultaneously problems for soil health and ecosystem due to the mandatory application of high-nitrogen fertilizer, irrigation and pest management. The strategy became environment non-friendly and led to an ecologically unstable system. Moreover in view of the above in-built capital-intensive nature of the green revolution strategy, which is though scale-neutral but not resources-neutral, it led to agricultural growth with non-equity, there being increased disparity between rich and poor farmers. Dialectical agriculture In quantitative terms, in most of the forms of agriculture, the approach normally followed is unidirectional - from input factors to the output. The strategy for sustainable crop production, however, depends on understanding how the plant production system influences and is influenced by the environmental system. In intensive cropping systems, plant growth extracts nutrients from the soil that adversely affects its health. If the health status of the soil is to be preserved at some desired level for future use, the production process gets constrained in that the production would become It is apparent from the above discussion that the scenario of agriculture has been changing according to needs and resources of the regions where it has been practiced with no firm strategy for adoption. The bottom line however is the need for maintaining sustainability in food production to be able to feed the ever growing population of the world.