Abstract
In Cordoba, Argentina, the peri-urban horticulture is in conflict with industrial agriculture and urban development. This problem is partly due to urban expansion to rural areas occurred in the last years and to monoculture farming, which has replaced traditional fruit and vegetable cropping in the region. This transformation process has raised concern about the current and future availability of productive sectors that can sustain food supply within the city boundaries and its immediate surroundings as well as about the loss of ecosystem services associated with peri-urban natural environments. Although these dynamic processes are well known, they have not been described or quantified in Cordoba. Baseline information about land use and its dynamics in productive areas or about number of producers is insufficient and/or out of date. At O-AUPA (Spanish acronym for Observatory of Urban and Peri-urban Agriculture and Agroecology) different mapping strategies are developed to contribute to the understanding of the land dynamics in the Green Belt of Cordoba (GBC) and the rural environments surrounding the city. In this work, we present a method based on the use of remote sensing and geographical information systems to characterize urban, peri-urban and rural areas of Cordoba city with the aim of evaluating the temporal dynamics of urban growth and the current state of land use and cover. We mapped and quantified the urban growth between 1974 and 2014, and evaluated land use in peri-urban and rural areas in 2015. We used satellite information from Landsat TM 5 to map the urban growth via a principal component analysis (PCA) and SPOT 5 imagery to characterize the current land use and land cover with the support vector machine classification algorithm. The results show an urban area growth of 46.5% over almost 40 years within the boundaries of the Capital department. Farm plot size increased, showing a concentration of land ownership, implying a reduced number of producers. Evidence indicates the importance of defining land planning guidelines that limit the advance of the urban frontier to valuable agricultural systems, ensure diversification of productive activities and protect and develop the fresh food production systems at the local level.
Author Contributions
Copyright© 2019
A. Mari Nicolás, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Land use planning, is a crucial process that requires that social actors assemble knowledge of the strategic variables generated by the complex dynamics and changes in the biophysical, socioeconomic, cultural, technological, and political situation in a territory. Awareness of the current situation is not enough; rather, it is also necessary to understand the temporal dynamics: the historical process, the current situation and the trending scenarios. Likewise, there is also a need to articulate the different scales and dimensions operating in a territory, from the local to the global scales, from the microbiological level to scenarios such as climate change, from the rationale of the internal market to decisions made outside the region, in the international markets, which influence the local responses Among the biophysical variables, land use and land cover type (agricultural and natural) require an accurate analysis of their spatial and temporal distribution, which evidences the production rate in a region and agroecosystem stability and capacity to provide ecosystem services Many strategies are well known for the purpose of mapping and analyzing the urban-rural transformation processes. Remote sensing and Geographical information Systems (GIS) are the main tools for providing local, regional and global historical databases. As part of the fast growing computational capabilities and storage, digital image processing is becoming more accessible with the more reliable digital processing techniques In Argentina, Córdoba was one of the first provinces to exhibit expansion of annual crops in the 90s, as indicated by the agricultural censuses. This phenomenon has caused profound biophysical, socioeconomic and cultural transformations in the territory The peri-urban area, historically known as the “Green Belt of Córdoba” (GBC), has the typical characteristics of a rapid, uncontrolled and scarcely planned urban growth at the expense of the surrounding agricultural land, neglecting the importance of local food production. That process has been largely promoted by the real estate boom and industrial expansion to areas that had been traditionally used for fruit and vegetable production Thus, the GBC area has been reduced due to both the growth of the urban area and the expansion of extensive cropping towards peri-urban areas. Both processes have generated an array of conflicts regarding distribution, availability and type of productive activities in the GBC. As a consequence, new activities are conducted in the GBC that are no longer related to its strategic and historical role, which was the provision of food and raw materials in the area surrounding the city. Given the possible decline of land productive capacity in the area due to land use deregulation and water scarcity), it is crucial to make a comprehensive diagnosis of the area, involving the following aspects: biophysical environment and rural infrastructure, spatial distribution of the population, socioeconomic and cultural levels of the populations, ecosystem service provision (production of commodities, water regulation, carbon fixation, erosion control, etc.), landscape transformation (mapping of types of covers and their temporal dynamics), land tenure and distribution and regulatory framework. One of the activities conducted at the Observatorio de Agricultura Urbana, Periurbana y Agroecología de Córdoba (O-AUPA, Observatory of Urban and Peri-urban Agriculture and Agroecology) is to assemble knowledge to promote care and preservation of agricultural productive spaces of the GBC. The institution proposes the coordination and articulated actions of stakeholders working and participating in a single region to generate complex, multisector and multidimensional knowledge, and management of information; this emerging discipline is termed territorial intelligence. Therefore, the method proposed by O-AUPA is one that uses Participatory Action Research (PAR), which is based on building knowledge with others (shared knowledge), as well as on the articulation of actors and the generation of networks for sharing the currently fragmented and disarticulated knowledge. Thus, O-AUPA is proposed as a tool encompassing diverse innovative theories, practices and strategies for territory development Based on data collected from inter-institutional participative workshops, surveys to producers, satellite data, as well as on the use of GIS, we propose 1) characterizing the GBC by mapping the urban area of Córdoba city in 1974 and 2014 and determining the urban growth over that 40-year period and 2) determining the current agricultural land cover and use and the changes in agricultural parceling.
Materials And Methods
The work was conducted in an area of approximately 170,000 ha of the metropolitan region of Cordoba city. The limits of the study area were the Sierras Chicas (below 600 m a.s.l.) to the west, the altitude above 350 m a.s.l. to the east; the locality of General Paz to the north and the national Route C-45 to the south. The area covers the historical Green Belt of Cordoba (GBC), including three well-defined sectors: the northern sector, irrigated by Canal Maestro Norte; Villa Retiro, Villa Esquiu, El Quebrachal, part of Colonia Tirolesa; the eastern sector covers the area of Chacras de la Merced, and the southern sector includes the road to San Carlos, Ferreyra, also defined by the irrigation system -Canal Maestro Sur, which is derived from San Roque reservoir-, although they are currently supplied in part by Los Molinos reservoir. ( The analysis was focused both on the peri-urban area surrounding Cordoba city, where small and medium producers of fresh food that supply the local market are concentrated, and on more distant areas characterized by extensive agriculture. The study includes the productive areas to the north and south of the city, which have been characterized as herbaceous graminoids under irrigation Mean annual temperature in the study area is 17 oC, with thermal amplitude of 14 oC. Frosts occur between May and September, and the frost-free period spans 270 days. Mean annual precipitation is 750 mm, with a monsoonal seasonal distribution. Water deficit varies between 180 mm in the east and 240 mm in the west The characterization of the GBC consisted of three phases of analysis: 1. urban growth in Cordoba city (delimitation of the historical perimeter of the city and comparison with the current one) 2. present land cover types 3. dynamics of agricultural parceling (determination of the changes in parcel structure). The historical and present boundaries of Cordoba city were delimited with a multi-temporal principal components analysis (PCA) Based on the distribution of the limits of the neighborhoods (DGCyE, 2008), we calculated the urbanized proportion within each neighborhood for the two years of study (Equation 1). Then, we used a normalized change index to evaluate the relative change in urban growth (Equation 2). Agricultural land use and cover types were characterized and analyzed using a 10-m spatial resolution SPOT 5 image (Satellite pour l observation de la terre) acquired on March 11 2015 ( The date selected for classification coincides with the end of the maturity cycle of summer crops and the future harvest in April/May; in contrast, winter crops cannot be characterized in March, since this in an early date. Intensive agriculture known as Liviana is characterized by crops of alternate short cycles of approximately 3 months; thus, production can be characterized on a continuous basis using images over the year. In March, pesada extensive agricultural crops (potato, carrot) are ready for harvest and, in general, local producers, particularly of potato, usually leave them in the ground for a maximum period of three months; hence in March plots will be visualized as deprived of or with low plant cover. The training strategy of SVM was conducted based on geolocation of field samples (direct observation of crops) and by visual interpretation on a SPOT image. Field visits were made to the study area between April and June 2015 ( OA summarizes the overall result of the classification. The Kappa number is an alternative measure of the accuracy of classification that subtracts the effect from random accuracy. Kappa quantifies how much better a given classification is than a random classification. The analysis of agricultural parceling consisted of three phases: a) texture filters, b) segmentation and c) unsupervised classification. These techniques are widely used in digital image processing with the aim of identifying homogeneous shapes, sizes and edges. Different co-occurrence texture filters were tested on different far off dates (
Method
Data
Dates
Bands
Spectral Region
Wavelength (µm)
Spacial Resolution (m)
1) Analysis of urban growth of Cordoba city
Principal Component Analysis (PCA) / Unsupervise Classifier ISODATA
Landsat 1 MSS
12/06/1974
4
Green
0,5-0,6
60
5
Red
0,6-0,7
6
NIR
0,7-0,8
7
SWIR
0,8-1,1
Landsat 8 OLI
24/07/2014
2
Blue
0,45-0,51
30
3
Green
0,53-0,59
4
Red
0,64-0,67
5
NIR
0,85-0,88
6
SWIR 1
1,57-1,65
7
SWIR 2
2,11-2,29
2) Analysis of current agricultural land cover and use
Supervise Classifier Support Vector Machine (SVM)
Spot 5 HRG1 - Google Earth
11/03/2015
1
Green
0,5-0,59
10
2
Red
0,61-0,68
3
NIR
0,78-0,89
4
SWIR
1,58-1,75
3) Analysis of the dynamics of agricultural parceling
Texture Filter / Segmentation / Unsupervised classifier ISODATA
Landsat 5 TM
11/04/1988
4
NIR
0,76-0,90
30
Landsat 8 OLI
24/07/2014
5
NIR
0,85-0,88
30
NIR: Near Infrared
SWIR: Short Wave Infrared
Results
Urban growth was evident in all the periphery of Córdoba city. In the northern zone of the GBC, the neighborhoods showed a mean growth of 26.4%, considering the average urban proportion between 1974 and 2014. In 1974, the neigborhoods Ciudad Villa Retiro, Finca la Dorotea, Ciudad de los Cuartetos, Los Chingolos, Nuestro Hogar II, La Dorotea Guiñazu Sud and Los Hornillos were completely rural areas; hence, absolute changes were recorded ( An “absolute” change was recorded for those neighborhoods that in 1974 were totally destined to fruit and vegetable production and other productive activities. A 100% change does not indicate that a neighborhood is currently totally urbanized, but that the zone was rural and exhibits urban uses at present. “Relative” changes are attributed to those neighborhoods which, by contrast, already had evidences of urban development in 1974 and that gradually expanded and occupied areas that were rural in the past. For these cases, the percent change explains the relationship between built area in the past and in the present ( ( Land use was disorderly, particularly for the zones outside the Av. de Circunvalación (beltway). The analysis shows that the neighborhoods that exhibited the highest sprawl within Capital department are those distributed in the north-western area, close to the Sierras Chicas; however, this aspect was not quantified in this work because this area is outside the GBC. Growth of the southern zone of the GBC was 33.2 % during the study period, which is a sensitively higher difference from that recorded for the northern zone (▲6.8%). The neighborhoods that did not exhibit urban zones in 1974 were: Ciudad Ampliacion Ferreyra, Quintas de Flores, 25 de Mayo, Country Fortin del Pozo, Quintas de Italia, Country la Santina, Rocio del Sur, Ciudad Obispo Angelelli, Villa Rivadavia, Inaudi, Ferreyra Segunda Seccion, Country Campina Del Sur, Country Los Mimbres, Posta de Vargas, Piedras Blancas and 23 de Abril. In increasing order, the neighborhoods with the greatest urban proportion at present (>50%) are: Tejas II, Nuestro Hogar III, Posta de Vargas, Piedras Blancas, Nuestro Hogar I, Villa Coronel Olmedo and 23 de Abril ( From a comparative perspective, for both zones, in most of the studied neighborhoods an overall greater urban development is observed in those neighborhoods that were rural areas in the past, whereas in the historically urban areas, the urban process was lower. In other words, urban growth occurred in new areas rather than in already urbanized sectors. Mapping results are presented in Mixed use lands covered 20 % of the total area; These zones are around the city, in which the rural and urban activities are distributed. Production of intensive crops (light horticulture) covered 1% of the study area, whereas heavy intensive production covered 4% (with dominance of potato) ( ( In comparative terms, the “urban” class had the best classification assessment, without confusion due to loss or overestimation of data. The highest omission error corresponded to maize class, and was due to the confusion recorded with the potato class and “mixed used lands” (data not shown). These results mean that the classifier recorded a smaller maize area than the true area size. Likewise, potato crop had the highest commission value of the classification, since this class was mostly confused with light horticultural crops, i.e. the classifier falsely depicted a potato crop. The approach used to detect changes in size, distribution and number of agricultural parcels present in 1988 and 2014 was based on two procedures: 1) visual interpretation by combining both dates in false color composite (RGB; nIR-Red-Blue), and 2) analysis of size and shapes of segments associated with agricultural parcels using the previously described procedure (see 2.2). Notable differences between parcel distribution and size were visually differentiated for the northern GBC. Although the dates of analysis have a three-month difference for each year, it is evident that parcel distribution and size were reduced at the temporal scale analyzed. To estimate the relationship between size and number of parcels in the years analyzed, we applied the segmentation process, which allowed us to evaluate those differences without the need to classify the land uses of the past. Here, they were used to define the characteristics of the agricultural parceling. Although the segment size may be over- or underestimated, the results of the analysis conducted provide a basis for making an estimation and support the hypothesis postulating the loss of production spaces devoted to intensive agriculture at the expense of the expansion of extensive agriculture due to soyization. In general, society has put an emphasis on the importance of urban green spaces, especially because recreational and landscape aspects are associated with a better quality of life. However, at present there is a new challenge: protecting peri-urban areas to ensure food production near the cities and to enable the continuity of traditional production practices. This work evidences how the urban growth process in Córdoba city, through the expansion of the urban area, has had direct effects on the reduction of the productive agricultural areas. The urban sprawls and the change processes recorded in the productive systems have displaced small and medium scale productive businesses, which were replaced with residential plots, social housing and gated neighborhoods, as well as agro-industrial businesses. Accordingly, local producers have been forced to sell or rent their lands and migrate to produce in other localities, or to definitively abandon food production, which threatens the continuity of agricultural activity in the Green Belt of Córdoba. Future work is needed in order to assess the quality and continuity of quantification and classification of peri-urban horticulture. More complex procedures are needed to be developed such as machine learning techniques. The information must be immediately available to end users and the institutions who are involved in urban and rural planning.
Class
Total Reference
Total classified
Correct Samples
Producer accuracy
User accurancy
Kappa
Urban
5
5
5
100%
100%
1
Soya
25
23
22
88%
96%
0.9412
Potato
3
8
3
100%
38%
0.3548
Corn
12
8
8
67%
100%
1
Forest
0
6
0
no data
no data
0
Mixed use land
22
17
15
68%
88%
0.8474
Fallow
1
0
0
no data
no data
0
Alfalfa
4
5
4
100%
80%
0.7913
Water
5
6
5
100%
83%
0.8242
Horticulture
19
18
15
79%
83%
0.7922
Total
96
96
77
Overall Accurancy = 80,21 % - Kappa General=0,76