Abstract
An integral and efficient management of water for irrigation requires the adoption of new technologies to respond to the challenges imposed by the agricultural sector, in particular to stabilize production through the adequate use of water resources. In this sense, it is vital to characterize and know the amount of area which is under irrigation in such agricultural systems. In this paper we show the use of satellite information data in a GIS environment with the objective of characterizing the productive areas under irrigation in Cruz del Eje, Cordoba, Argentina in 3 types: A) irrigation region B) irrigable area and C) actually irrigated area. Multitemporal image indices and segmentation were used for this characterization and then maps of these 3 types of agricultural land cover were generated. Additionally, we present simple satellite images processing and classification procedures to increase the knowledge about the land cover over this irrigated area. Finally, we discuss how this geographically explicit information generated could be useful for the decision-making process on current irrigated areas and on the potential of productive systems through community irrigation systems.
Author Contributions
Copyright© 2019
Victoria Marinelli M., et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
The use of water as an asset of great utility and high abundance in absolute terms, was globally extended until the 1970s Argentina does not have reliable and updated statistics on irrigated areas, and less so on its characterization, technological and temporal evolution The fruits and vegetables sector of Córdoba province represents 16% of national production The northwest region of Córdoba, has 66 water systems integrated by basins and micro-watersheds capable of capturing and driving the rainwater mainly used for agricultural purposes. The 10 largest of these, have dams and reservoirs. The irrigation systems nourished by them are regulated by consortiums, but still water management is not efficient and important territorial conflicts have arisen. In particular, in the irrigation systems of Cruz del Eje and Pichanas, less than half of the flow that must reach the farm gate is available. In this framework, we present a case study applying the methodology for characterization of irrigated areas
Materials And Methods
The study was carried out in the Northwest of Cruz del Eje department ( A dike supplies water for irrigation (Lat. -30° 64' and Long. -64° 30'). The maximum height of the reservoir is 111,985 Hm3. Potential irrigation is 12,050 has. The average annual rainfall of the basin is around 580 mm, the surface of the basin of contribution is 1,700 km2. The system has two margins of Cruz del Eje River and 16 Channels Throughout the year, irrigated crops have different characteristics among each other and from rain feed ones, either because of its phenological growth, or because of the management they are subject to. Based on this idea, Landsat OLI 8 satellite images from three dates (each agricultural year) were selected to explore the annual cycle according to the management and phenology. A winter date (June-July), and two spring-summer dates (October and December-January). It was done for 3 agricultural cycles including then the following image data set: 2013-07-28, 2014-01-04, 2014-06-29, 2014-08-16, 2014-12-06, 2015-03-28, 2015-06-16, 2015-08-03, 2015-09-04, 2015-10-22, 2015-12-08, 2016-01-18, 2016-05-01. All these products were calibrated to reflectance. For each image, vegetation spectral indexes (NDVI, NDWI and SAVI) were calculated in order to observe which of the indexes is most useful for the identification of irrigation area. Finally, only the NDVI (Normalized Difference Vegetation Index) Specifically, to detect the presence of crops under irrigation, a map of agricultural plots (2,523 polygons) was built (e.g. Then, based on the NDVI values assigned to each polygon, those that presented their annual maximum (constructed from 3 annual images) lower than the minimum NDVI value of the polygons on the ground truth irrigated fields (information provided by rural extension agency of Cruz del Eje) were filtered. For validation, another 14 horticultural plots were taken as a test set, yielding 100% accuracy. ( For the analysis and typological classification, we adopted the definition generated by INTA in their project entitled Water management and irrigation for sustainable development of the territory (Gestion del agua y el riego para el desarrollo sostenible del territorio, PE 1133044) on actual and potentially irrigated areas. A. Irrigation region: This term refers to a geographical space where the socio-economic development results from the management of its available water resources, covering aspects of production, distribution, protection, in balance with the social, historical, cultural and economic issues. It is represented by a surrounding polygon that delimits land with agricultural / livestock use and within which the dominant class is irrigated crops. B. Irrigable area: It corresponds to all that surface within an irrigation region that has potential to be irrigated. To define irrigable areas, the following criteria were considered: i) access to water, ii) irrigation system in conditions to be used, iii) irrigation aptitude. In this case the "cadastral domain" is stipulated as a unit of analysis and work. C. Actually irrigated area: Corresponds to the lands that are being irrigated at a specific time. Thus, the area irrigated in a territory during spring is different from the area irrigated during summer, since we find different crops with significant variations of phenological cycle and agricultural management. These areas will be within the irrigable area and may coincide with it or be smaller. The actual field data of horticultural farmers (polygons/plots) is obtained by grouping three different data sources: KML Layer Cadaster 2016. The KML data was exported to the shape file format using QGIS software Summary registration form. It contains 410 records (surname and first name, property tax number and description, DGI account number, area, channel, amount of water assigned and consortium account) Map of digitized agricultural plots with phenological data from the NDVI temporal series (See section II.2). The final datasheet generated on the base of these several data sources was provided by the people in charge of granting the irrigation shift, called "llaveros". Together with llaveros, we performed visits to farmers within the irrigation system and recorded irrigated fields with GPS. ( Four classifiers were explored on a Sentinel 2A image, pre-processed to surface reflectance. We worked with the bands blue B2, green B3, red B4, three red edge bands B5, B6, B7, near infrared (NIR) B8 and two SWIR bands B11 and B12. All of them were resampled to a spatial resolution of 10 m. The image corresponds to June 7, 2016 presenting cloudiness percentage of less than 40%. The campaign to obtain ground truth points was carried out on July 19, 2016. We classified the image in the software ENVI 4.8 © (CONAE license). Two unsupervised classifications were used (ISODATA and K-MEANS) instantiated with default values, assigning 5 to 15 classes in the search with 400 iterations (ISODATA) and 10 classes in the same conditions (K-MEANS). The urban area of Cruz del Eje was masked out. The unsupervised classifications are those in which the classifying algorithm does not need more information than the image and some parameters that limit the number of classes. These classification mechanisms search for classes with sufficient spectral separability to differentiate some elements from others In terms of supervised classification, the Support Vector Machine (SVM) algorithm of ENVI 4.8 © was used, with a Radial Basis Function type kernel. The algorithm was trained with field data taken with GPS on June 19, 2016; with 1089 pixels (57 polygons) to determine 5 types of coverage: Water and artificial cover (construction); Seminatural (pastures, shrubberies, buffel grass not irrigated, stubble-corn and cotton); Bare soil (bare soil and plowed earth); Irrigated herbaceous (horticultural, alfalfa and winter green); Irrigated Trees (pomegranates, olive trees and water boundaries trees). In order to determine the accuracy of the resulting maps, we computed the confusion matrices, using 30% of the ground truth points (728 pixels in 25 polygons) as a validation data set. The Global Accuracy and Kappa Statistic (K) The other supervised classification model applied is Random Forest (RF), an automatic algorithm in which decision tree models are iteratively adjusted to random subsets of the input data and use the combined result for prediction
Results
On the base of the available data sources and the geographic link between them, we can obtain 3 GIS layers: i) irrigation region delimited by the official province administration presented in Next, the adopted criteria for the delimitation of the proposed products are described with more detail: It is the geographical space where the socio-economic development results from the management of its available water resources. Essentially it contains agricultural land use. It is represented by a surrounding polygon that delimits it. This area may contains other kinds of land use It is built summing all the surface contained within an irrigated region, with potential to be irrigated, according to the following criteria: i) access to water, ii) irrigation system in conditions to be used, iii) irrigation aptitude. The "cadastral domain" is defined as the unit of analysis and work. The sum in terms of area of each cadaster domain identified as a unit of irrigable area will ultimately constitute the irrigable area of a certain irrigated area. The layer is obtained by the union of Cadastral information matrices, DGI registration and consortium account. ( It corresponds to land within the limits of the irrigable area of equal or smaller size. The irrigated plots were generated in 3 stages: 1) digitization of polygons through visual interpretation of Google Earth® images, obtaining the agricultural parceling, 2) allocation of phenological data to each plot using NDVI temporal series and, 3) intersection of the digitized polygons layer with the irrigable area (A + B). ( Through characterization, official data and remote sensing (indexes and digitizing of parcels), we obtained that the area really irrigated in Cruz del Eje system is approximately 4717.45 ha ( If we only follow the method proposed in In In the figure we can see how ISODATA and K-Means were able to detect different coverages within the plots. In the case of K-Means, it may be due to the greater number of classes, but for the ISODATA and SVM comparison, with the same number of classes, the first one is better. For a first approximation to the land cover, the classification with ISODATA was useful and allows us to define distinct classes. The results from the confusion matrix of SVM seem promising and they represent an operational method to identify the amount of irrigated area, even with few field data. This result of global precision would improve if we increase the ground truth data; and thereby define other more specific interest classes. The final classification for the whole region obtained with RF is presented in ( The operational advantage of the SVM against RF (which showed better results) is something to be evaluated by the operator. If an algorithm is implemented as an R script in the QGIS environment, it can remedy the accessibility of this powerful classifier, while the processing cost is greater in RF compared to SVM. Within the established irrigation region, the irrigated herbaceous (horticultural, alfalfa and winter green) area is 4,948.8 ha (
Statistics
Irrigable Area
Irrigated Area
Irrigated AreaNot formally registered
Mean (Ha)
38,82
2,66
2,79
Median (Ha)
8,72
1,11
1,48
Minimum (Ha)
0,06
0,05
0,061
Maximum (Ha)
1006,82
64,67
37,45
N
295
1008
731
Total Area. (Ha)
11.451,1
2685,45
2032
Overall Accuracy
Kappa-Coef
RF
99,8 %
0,96
SVM
86,5 %
0,81
Class/classification
RF Irrigation Region (ha)
Water and artificial cover
433.8
Irrigated Trees
6,535.61
Irrigated herbaceous
4,948.8
Seminatural
6,575.34
Bare soil
1,036.4
TOTAL
19,529.95
Discussion
Using a characterization including the official datasheets and remote sensing we can present a simple approach with which we can say that the actually irrigated area in the Cruz del Eje System is approximately 4,717 ha in contrast with the 11,450 historically reported as irrigable area, and the 2,680 ha that is officially reported for year 2016 with the proposed method This study based in an enrichment of that methodology propose for INTA The improvement offered by the manual segmentation The results of the surveying, characterization and mapping of irrigated and / or potentially irrigable areas can provide products that allow the elaboration of analysis maps referring to the current use of water for irrigation purposes as a descriptive memory and management tool. This work demonstrates that even without all the institutional field database needed by the methods The importance of this study is to increase the knowledge and propose a constant update of the amount of hectares irrigated. Ina system such as Cruz del Eje, which manages limited water flows and that, its inefficiency results in an environmental and economic cost that affects the sustainability of food production. This method is easy to adopt, given that the processing tools and source data are freely available and we currently have products processed almost immediately upon acquisition. For example, Sentinel 2 is available for free as calibrated surface reflectance. The processing validated by this work sets precedents for a systematic follow-up of the amount of hectares with just one campaign of ground truth per field to be classified and a script that is available in GitHub for R Different institutions, the General Directorate of Irrigation (DGI), the National Institute of Agricultural Technology (INTA); as well as the community management of water resources for irrigation, find in this methodology a response to their demands for information that is fundamental for water management and technical support. Once the areas have been established according to the method proposed by